Hybrid Swarm Intelligence Technique for CBIR Systems
نویسنده
چکیده
Literature has proved the individual performance of ABC and PSO while solving various optimization problems. However, as PSO searches the solution by updating the particles and the ABC searches by bees’ wandering behavior, there are drawbacks persist in the individual performance. Hence in our previous work, we have proposed a hybrid swarm optimization technique to outperform the individual performance of ABC and PSO. The experimentation was done using standard benchmark test function models and the comparisons were made against the individual performance of PSO and ABC. This work is an extension of our previous in which we take an image processing problem called Content-Based Image Retrieval (CBIR) to evaluate the performance of the proposed hybrid algorithm. CBIR systems are the most popular image processing system in which relevant images are retrieved from a huge database when a query image is given. In such CBIR systems, multiple features are used to determine the relevance of retrieved images and query images. In this scenario, it is essential to minimize all the features distances that are determined between the query image and the database images. To perform the retrieval stage efficiently, an effective search algorithm is required. Hence, in this paper we exploit the proposed hybrid algorithm in the retrieval stage of a CBIR system to ensure the retrieval performance. The technique will be implemented in the working platform of MATLAB and the retrieval accuracy will be compared with the conventional methods.
منابع مشابه
Algorithms For Feature Selection In Content Based Image Retrieval:A Review
CBIR applies to techniques for retrieving similar images from image databases, based on automated feature selection methods. Feature selection is an important topic in data mining, especially for high dimensional datasets. Feature selection (also known as subset selection) is a process commonly used in machine learning, wherein subsets of the features available from the data are selected for ap...
متن کاملOptimizing Design of Stand-alone Hybrid Solar Micro-CHP Systems Using LUS Based Particle Swarm Optimization Algorithm
Utilizing the combined cooling, heating and power generation (CHP) systems to produce cooling, heat and electricity is growing rapidly due to their high efficiency and low emissions in commercial and industrial applications. In conventional CHP systems the deficit of the system power can be purchased from the grid. However, this system cannot be used as the standalone application. The hybrid so...
متن کاملIntroducing a Hybrid Swarm Intelligence Based Technique for Document Clustering
Swarm intelligence (SI) is widely used in many complex optimization problems. It is a collective behavior of social systems such as honey bees (bee algorithm, BA) and birds (particle swarm optimization, PSO). This paper presents a detailed overview of Particle Swarm Optimization (PSO), its variants and hybridization of PSO with Bee Algorithm (BA). This paper also surveys various SI techniques p...
متن کاملArtificial Bee Colony (abc) and Neural Network Based Opf Technique with Facts Controller
In the paper, hybrid technique for solving optimal power flow problems that occur in power systems. The proposed hybrid technique is the combination of artificial bee colony (ABC) algorithm and artificial intelligence (AI) technique. The purpose of the ABC algorithm is used to optimize the optimal operating range of generation limits. So, the fuel cost and the emission of the power generation s...
متن کاملSoft Computing Methods based on Fuzzy, Evolutionary and Swarm Intelligence for Analysis of Digital Mammography Images for Diagnosis of Breast Tumors
Soft computing models based on intelligent fuzzy systems have the capability of managing uncertainty in the image based practices of disease. Analysis of the breast tumors and their classification is critical for early diagnosis of breast cancer as a common cancer with a high mortality rate between women all around the world. Soft computing models based on fuzzy and evolutionary algorithms play...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013